
LEARNING-AIDED 3D OCCUPANCY MAPPING FOR MOBILE ROBOTS

by

Kevin Doherty

SENIOR THESIS, B.E.

Submitted to the Faculty of the Stevens Institute of Technology
in partial fulfillment of the requirements for the degree of

BACHELOR OF ENGINEERING

Kevin Doherty, Candidate

ADVISORY COMMITTEE

Brendan Englot, Advisor Date

Philippos Mordohai, Reader Date

STEVENS INSTITUTE OF TECHNOLOGY
Castle Point on Hudson

Hoboken, NJ 07030
2017

c©2017, Kevin Doherty. All rights reserved.

iii

LEARNING-AIDED 3D OCCUPANCY MAPPING FOR MOBILE ROBOTS

ABSTRACT

We consider the problem of mapping an a priori unknown environment using a robot

equipped with sparse and noisy range sensors, such as in the case of a robot navigating

underwater with sonar. We present and examine novel methods leveraging recent

advances in machine learning to achieve real-time, accurate mapping.

While learning-based methods have achieved success in mapping two-dimensional

environments, extension to three-dimensional maps presents significant computational

challenges. We propose an incremental version of Hilbert maps—a mapping frame-

work using a logistic regression classifier trained on range sensor data—where we use

multiple classifiers trained on local range data that can be merged to produce accurate

maps. We also present a mapping method making use of Bayesian kernel inference

with sparse kernels to demonstrate real-time mapping with accuracy comparable to

alternative state-of-the-art Gaussian process regression-based methods. The model

used for inference has the desirable property that it admits exact incremental updates.

Finally, we have released the Learning-aided 3D Mapping Library (LA3DM) con-

taining implementations of our Bayesian generalized kernel inference-based mapping

algorithm and others at https://github.com/RobustFieldAutonomyLab/la3dm.

Author: Kevin Doherty

Advisor: Brendan Englot

Date: May 4, 2017

Department: Electrical Engineering

Degree: Bachelor of Engineering

https://github.com/RobustFieldAutonomyLab/la3dm

iv

Acknowledgments

I would like to thank Professor Brendan Englot, whose guidance and encouragement

over the past few years made all of this work possible, and who gave me the opportu-

nity to dive head first into robotics research, supporting me along the way. I would

also like to thank my thesis reader, Professor Philippos Mordohai, whose wisdom and

advice have been invaluable to me. Both Professors Englot and Mordohai have served

as incredible mentors on the path to becoming a robotics researcher and as exemplary

educators, and I am truly fortunate to have been able to learn from them.

I owe a great deal of thanks to all of the folks at the Robust Field Autonomy

Lab, who have treated me like another graduate student throughout my time here,

and always made themselves available to help me out. I would especially like to

thank Jinkun Wang and Shi Bai, who have at various points fielded endless streams

of questions from me about robotics and machine learning.

Finally, I would like to thank my friends for making Stevens my home for the

last four years, as well as my mom, my dad, Karyn, Matt, and Ashley; without all of

their love and support, none of this would be possible.

v

Table of Contents

Abstract iii

Acknowledgments iv

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation 1

1.2 The Problem Statement 4

1.3 Related Research 5

1.4 Summary of Contributions 6

1.5 Notation 7

2 Background 8

2.1 Mapping with Known Poses 8

2.2 Learning Occupancy Maps 11

2.3 Gaussian Process Occupancy Maps 13

2.3.1 Gaussian Process Regression 14

2.3.2 Gaussian Process Regression for Classification 15

2.3.3 Bayesian Committee Machine 16

2.3.4 Mapping with Gaussian Process Regression 17

2.4 Hilbert Maps 18

2.4.1 Logistic Regression 19

vi

2.4.2 Kernel Approximation 20

2.4.3 Stochastic Gradient Descent 21

2.4.4 Mapping with Hilbert Maps 22

3 Overlapping Hilbert Maps 24

3.1 Probabilistic Local Map Fusion 26

3.1.1 Map Update Algorithm 27

3.2 Computational Results 31

3.2.1 Structured Simulation 32

3.2.2 Unstructured Simulation 33

3.2.3 Real Data 34

3.2.4 Noise in Sensor Data 39

3.3 Summary 39

4 Nonparametric Bayesian Inference for Occupancy Map Prediction 40

4.1 Related Work 42

4.2 Bayesian Generalized Kernel Occupancy Maps 43

4.2.1 Bayesian Nonparametric Inference 43

4.2.2 Sparse Kernel 46

4.2.3 Test Data Octrees 47

4.3 Computational Results 49

4.3.1 Simulated Data 51

4.3.2 Real Data 53

4.3.3 Comparison of Long-Term Behavior 54

4.4 Preliminary Experiments using Point-to-Line Distance 58

4.5 Summary 60

vii

5 Discussion and Conclusion 61

5.1 Avenues for Future Work 61

5.2 Conclusion 64

Bibliography 65

viii

List of Tables

3.1 Numerical comparison of the methods tested on the structured map. 29

3.2 Numerical comparison of the methods tested on the unstructured map. 36

3.3 Computation time comparison for Hilbert maps. 37

4.1 Computation time comparison for mapping with Bayesian generalized

kernel inference. 47

ix

List of Figures

1.1 Samples of sonar data acquired from a VideoRay Pro4 ROV equipped

with a Tritech Micron single-beam scanning sonar. 1

1.2 3D maps built with single-beam scanning sonar, from Wang et al. [37]. 2

2.1 Probabilistic graphical model of mapping with known poses. 8

2.2 Representative example of Gaussian process occupancy maps from [17]. 17

2.3 Representative example of Hilbert maps from [22]. 22

3.1 Step-wise updates of overlapping Hilbert maps. 25

3.2 3D Hilbert maps applied in a simulated structured environment. 28

3.3 Receiver operating characteristic curves for Hilbert maps evaluated on

the Structured environment dataset. 30

3.4 3D Hilbert maps applied in a simulated unstructured environment. 31

3.5 Receiver operating characteristic curves for Hilbert maps evaluated on

the Unstructured environment dataset. 35

3.6 Overlapping Hilbert maps applied to real data from the University of

Freiburg. 36

3.7 View from inside the corridor; raw data compared to the occupancy

map produced using incremental overlapping Hilbert maps. 38

3.8 Overlapping Hilbert maps applied to noise-corrupted sensor data. 38

4.1 Illustration of test-data octrees from Wang and Englot [36]. 48

4.2 Pruning the test-data octree. 49

x

4.3 Receiver operating characteristic curves for BGKOctoMap and GPOc-

toMap evaluated on the Structured and Unstructured maps. 50

4.4 Bayesian generalized kernel inference applied to the Structured envi-

ronment. 51

4.5 Bayesian generalized kernel inference applied to the Unstructured en-

vironment. 52

4.6 BGKOctoMap applied to the Freiburg FR-079 corridor dataset [34]. 53

4.7 Mapping simulation results with repeated data. 54

4.8 Preliminary results using point-to-line distance for free-space represen-

tation. 59

1

Chapter 1

Introduction

Figure 1.1: Samples of sonar data acquired from a VideoRay Pro4 ROV equipped
with a Tritech Micron single-beam scanning sonar.

1.1 Motivation

In many practical applications of robots, we require reliable planning and navigation,

but available sensors provide sparse data that is often corrupted by noise. This

is especially the case with underwater robots, where currents impose a challenging

dynamic and stochastic navigation problem, but sensors, such as single-beam scanning

sonars, may provide multiple returns suggesting different distances to obstacles and

have a large beam-width, corresponding to low angular resolution, and therefore high

uncertainty in the relative location of an obstacle. For reliable underwater planning

and navigation, accurate maps are vital, but to obtain useful maps we must address

the limitations of perception.

2

(a) Pier 84 OctoMap (b) Pier 84 GP OctoMap

(c) USMMA OctoMap (d) USMMA GP OctoMap

Figure 1.2: Map comparison between OctoMap, a 3D occupancy mapping framework,
and GP OctoMap, an adaptation of OctoMap that uses Gaussian process regression
to consider spatial correlations in the construction of the map. Colored cells represent
occupied space, while empty areas represent free space, and the color of a cell varies
as a function of the cell height. Figure adapted from Wang et al. [37].

3

Traditional occupancy grid mapping, developed by Elfes ([4], [5]), discretizes

the 2D or 3D space of range data into 2D cells or 3D voxels respectively to form a map,

then casts rays from the range sensor origin to the location of the measurement to

update the probability that each cell is occupied, making the simplifying assumption

that the occupancy probability of each map cell is independent from all others. While

this assumption allows computation to be performed efficiently—explicitly avoiding

consideration of correlations between every pair of grid cells of a potentially large,

high-resolution grid—we lose the ability to represent existing spatial correlations. In

scenarios where range sensors provide dense, high-fidelity scans, this assumption has

little impact on the resulting quality of the map, but when data is limited, con-

sideration of spatial correlations can allow us to build a denser map for planning

and navigation by accurately inferring about the occupancy of voxels that have not

directly intersected the beam of the sensor. It is this representation of spatial corre-

lations that we seek to address by relaxing (or removing entirely) the independence

assumption of occupancy grid mapping, and considering the mapping problem one of

learning the map given the collected range data, making use of relationships among

neighboring regions of space.

Modeling spatial correlations in occupancy maps offers several benefits over

traditional occupancy grid mapping. For one, the learned model of the map implicitly

represents the probability of occupancy over space, meaning that rather than storing

occupancy probability values at every location in space we can store a potentially

much smaller model instead, querying as needed. Second, and owing to the first, we

can examine these spatial correlations in either a discrete framework like occupancy

grid maps, or a continuous framework, which affords the ability to query the map

at arbitrary resolution. As a motivating example, consider the sonar data displayed

in Figure 1.1, collected by a VideoRay Pro4 ROV equipped with a Tritech Micron

4

single-beam scanning sonar. Objects far away from the center, where the sensor is

located, show significant distortion, and in many cases we observe stretching artifacts

occurring due to the robot’s change in orientation during the several seconds it takes

to obtain a full 360◦ scan. Occupancy maps built from similar sonar data (collected

at Pier 84 at Hudson River Park, New York City and the U.S. Merchant Marine

Academy (USMMA) in King’s Point, New York) using the OctoMap [7] framework

are displayed in Figure 1.2, adapted from [37], along with the Gaussian process (GP)

OctoMaps [36] built using the same data. The GP OctoMap method, a learning-aided

mapping technique, provides a much denser representation that would be more useful

in navigation and planning scenarios than the maps produced by OctoMap alone.

These results motivate interest in learning-aided mapping techniques as a means of

introducing spatial dependencies during the mapping process to build denser maps

and filter noise-corrupted sensor data.

1.2 The Problem Statement

We consider the problem of mapping an a priori unknown environment using a sensor.

We are particularly interested in scenarios where the sensor provides sparse range

measurements and may be corrupted by noise. We assume that the environment we

seek to map is static (i.e. we make the Markov assumption, that only the state of the

robot may vary), but we do not make the assumption, as in occupancy grid mapping,

that the occupancy states of all locations in space are independent. Usually we will

assume that the pose of the robot is perfectly known, however we present methods for

incorporating pose uncertainty (when it is known) into the resulting map estimate.

Under these conditions, we seek to produce an accurate, dense map of the environment

online, in real-time wherever possible.

5

1.3 Related Research

Some of the first contributions in learning-aided mapping were due to Thrun, who

proposed learning inverse sensor models [30]—though this method did not consider

dependencies between observations outside the measurement cone for a sensor—and

learning in the space of all possible maps [31], which was perhaps the first effort to

build a map while considering correlations between all grid cells. While the latter

method fully captures dependencies between every grid cell, optimization is performed

over every possible map. For finely discretized 3-dimensional grids, this method

quickly becomes intractable.

In recent years there has been a growing body of literature on this topic. In

2012, Gaussian Process Occupancy Maps (GPOM) were proposed by O’Callaghan

and Ramos [17]. With GPOM, a Gaussian process regression [23] is performed over

sensor measurement data. The model considers correlations between all sensor mea-

surements, and since regression is performed strictly over the measurement infor-

mation, one can query the model at arbitrary resolution (i.e. the occupancy map is

continuous). Furthermore, each prediction comes with an uncertainty estimate, which

may be desirable in many planning and exploration scenarios. While GPOM enabled

construction of continuous occupancy maps that considered correlations between all

sensor observations, Gaussian process regression requires inversion of a kernel matrix

of size N ×N , where N is the number of sensor observations, with a time complexity

that is O(N3). This inversion step makes the GPOM method difficult to implement

in real-time.

Following this, Hilbert maps were proposed by Ramos and Ott [22] in 2015.

Hilbert maps take advantage of regularized nonlinear logistic regression trained with

stochastic gradient descent to perform fast training and inference. To introduce non-

6

linearity, a kernel is used, but approximated using methods like the Nyström method

[39] to speed up computation. Hilbert maps perform similarly in terms of accuracy

to GPOM, but by training via stochastic gradient descent, the kernel computation

becomes the most computationally-expensive step (with an approximation technique

this step requires a fixed, but potentially quite large, number of steps).

Kim and Kim proposed GPmap [10], a framework for Gaussian process occu-

pancy mapping and surface reconstruction that made use of the sparse kernel from

[13] for more efficient exact inference using the Gaussian process regression model,

as well as the “extended block,” which allows efficient retrieval of relevant training

data points. Additionally, Kim and Kim, as well as Jadidi et al. [8] have proposed

the use of the Bayesian committee machine for recursive updates to the Gaussian

process regression model in mapping scenarios. Finally, Srivastava and Michael [29]

propose learning a hierarchical mixture of Gaussians as a continuous representation

of colored 3D depth data, adopting an expectation-maximization approach to learn

the model and showing improvements over GPmap. Learning inverse sensor models

and considering correlations among map cells as in [30] and [31], respectively, as well

as GPOM and Hilbert Maps will be discussed further in Section 2.2.

1.4 Summary of Contributions

We propose two learning-aided mapping algorithms in this thesis. The first, over-

lapping Hilbert maps, is an approximation to the Hilbert maps method [22] where

we maintain local estimators and merge their predictions, rather than maintaining a

single global estimator. This method speeds up computation with limited sacrifice in

terms of the accuracy of the resulting map. The second proposed method is mapping

with nonparametric Bayesian kernel inference. We apply spatial interpolation directly

7

on occupancy probabilities, formulating the problem as one of Bayesian estimation

and recursively updating the Beta distributed posterior distribution (as the conju-

gate prior to the Bernoulli likelihood). This method affords exact recursive updates,

which we show to be useful in a voxel-based approach to mapping. Additionally, the

proposed method provides the prediction variance, which is not provided in the case

of any of the Hilbert maps formulations. Finally, we demonstrate that the updates

used in this method are advantageous when compared to the Bayesian committee ma-

chine [33] updates that are popular with Gaussian process regression-based mapping

methods used in voxel grids.

1.5 Notation

Usually a range sensor measurement comprised of a distance and bearing will be

denoted z, with a robot pose denoted x, and subscripts indicating the time at which

these measurements and poses occurred. However, in the context of the algorithms

we are considering, it will often be convenient to think about sensor measurements

strictly in terms of the geometry of the resulting measurements in the global reference

frame of the space we care about (for example, the coordinates of the resultant points

in a 2D or 3D Euclidean space), and in this case these sensor measurements will be

referred to as x (though, in these instances, measurements are considered with respect

to a global reference frame, so we need not describe the pose of the robot at the time

the measurements were obtained). Furthermore, m will denote a grid map with cells

mi, except in the context of kernel approximation, where we will occasionally use m to

denote the number of components used to approximate a kernel. We will consistently

use the notation x∗ to denote a query point, which is the point in the global reference

frame whose state we are asking about.

8

Chapter 2

Background

The following sections detail relevant preliminary content relating to traditional oc-

cupancy grid mapping, Gaussian process regression, and logistic regression and the

recent use of the latter two methods in mapping.

2.1 Mapping with Known Poses

xt−1

zt−1

xt

zt

xt+1

zt+1

m

Figure 2.1: Probabilistic graphical model of mapping with known poses.

The probabilistic graphical model in Figure 2.1 succinctly describes the pro-

cess of mapping with known poses. The robot at each instant in time observes its

pose and takes some measurement, which is related to the current pose and the latent

distribution of map occupancy. Formally, in occupancy grid mapping we are trying

to estimate the posterior p(m|x1:t, z1:t), the probability of the map given all of our

sensor measurements and the corresponding poses from which those measurements

were taken. The classical approach by Elfes [4] to occupancy grid mapping makes

the assumption that neighboring cells are independent, and estimates the map in-

stead by estimating the occupancy probability of each cell p(mi|x1:t, z1:t) individually.

9

The posterior for the map is approximated by factorization into the product of the

marginals:

p(m|x1:t, z1:t) =
N∏
i=1

p(mi|x1:t, z1:t), (2.1)

which greatly simplifies the issue of estimating the map. We can now use a binary

Bayes filter to estimate the probability of the state of each cell independently, and

take the product over all of the cells to obtain the posterior for the map. Recursive

estimation with the binary Bayes filter can be derived as follows:

p(mi|z1:t, x1:t) =
p(zt|mi, z1:t−1, x1:t)p(mi|z1:t−1, x1:t)

p(zt|z1:t−1, x1:t)
, (2.2)

which, recalling that we are making the Markov (or static map) assumption:

p(zt|mi, z1:t−1, x1:t) = p(zt|mi, xt) (2.3)

p(mi|z1:t−1, x1:t) = p(mi|z1:t−1, x1:t−1), (2.4)

we can simplify, writing the posterior in terms of the forward sensor model:

p(mi|z1:t, x1:t) =
p(zt|mi, xt)p(mi|z1:t−1, x1:t−1)

p(zt|z1:t−1, x1:t)
. (2.5)

We can then apply Bayes’ rule to the measurement model:

p(zt|mi, xt) =
p(mi|zt, xt)p(zt|xt)

p(mi|xt)
, (2.6)

(2.7)

10

acknowledging p(mi|xt) = p(mi), since mi and xt are independent:

p(mi|z1:t, x1:t) =
p(mi|zt, xt)p(zt|xt)p(mi|z1:t−1, x1:t−1)

p(mi)p(zt|z1:t−1, x1:t)
, (2.8)

and similarly write the negation as:

p(¬mi|z1:t, x1:t) =
p(¬mi|zt, xt)p(zt|xt)p(¬mi|z1:t−1, x1:t−1)

p(¬mi)p(zt|z1:t−1, x1:t)
. (2.9)

Dividing (2.8) by (2.9) we can write the ratio in terms of the inverse sensor model,

the previous estimate, and the prior:

p(mi|z1:t, x1:t)
p(¬mi|z1:t, x1:t)

=
p(mi|zt, xt)
p(¬mi|zt, xt)

p(mi|z1:t−1, x1:t−1)
p(¬mi|z1:t−1, x1:t−1)

p(¬mi)

p(mi)
(2.10)

=
p(mi|zt, xt)

1− p(mi|zt, xt)
p(mi|z1:t−1, x1:t−1)

1− p(mi|z1:t−1, x1:t−1)
1− p(mi)

p(mi)
. (2.11)

We can take the logarithm of this equation to obtain the log-odds representation,

giving an additive update:

l1:t,i = log
p(mi|z1:t, x1:t)
p(¬mi|z1:t, x1:t)

(2.12)

= log
p(mi|zt, xt)

1− p(mi|zt, xt)
+ log

p(mi|z1:t−1, x1:t−1)
1− p(mi|z1:t−1, x1:t−1)

− log
p(mi)

1− p(mi)
(2.13)

= lt,i + l1:t−1,i − l0, (2.14)

where lt,i is obtained from our inverse sensor model (which may be a heuristic model,

or obtained through learning-based methods as discussed in Section 2.2), l1:t−1,i is

the value of the log-odds for cell i at time t− 1, and l0 is the log-odds representation

of the prior probability assigned to mi. The prior probability assigned to mi is

typically assumed to be 0.5. The probability of occupancy can be recovered from this

11

representation as follows:

p(mi|z1:t, x1:t) = 1− 1

1 + exp(l1:t,i)
, (2.15)

or this can be rewritten in terms of the direct representation of probabilities in (2.11):

p(mi|z1:t, x1:t) =

1−
[
1 +

p(mi|zt, xt)
1− p(mi|zt, xt)

p(mi|z1:t−1, x1:t−1)
1− p(mi|z1:t−1, x1:t−1)

1− p(mi)

p(mi)

]−1
, (2.16)

which we will find useful later, in Section 3.1.1, as a map update procedure for

learning-based mapping.

From the stated equations, we can construct the algorithm for occupancy grid

mapping: on each new (state, measurement) pair (xt, zt), traverse every cell in the

grid; if the current cell is in the measurement cone of our sensor, update its log-odds

representation via (2.14), otherwise leave it alone.

One issue with this model is that we do not necessarily know the inverse sensor

model for a given sensor, and instead we must construct one. Heuristic methods for a

range sensor are presented, for example, in [32], but may not accurately capture the

characteristics of a particular range sensor. The more pressing issues, however, are

the two fundamental assumptions in the model: the static map assumption, and the

spatial independence assumption. We continue to make the static map assumption

in all that follows, but we will relax the independence assumption.

2.2 Learning Occupancy Maps

Historically, learning has been explored in two contexts within the domain of occu-

pancy grid maps. Thrun in [30] demonstrated the use of learning in a traditional

12

occupancy grid mapping formulation by attempting to learn the inverse sensor model

p(mi|zt, xt). This method allows us to characterize a particular sensor more accu-

rately than previously used heuristic inverse sensor models, such as the one described

in [32]. To learn the inverse sensor model, samples are drawn from the forward model

p(zt|xt,m) and a classifier is trained to predict the probability that mi is occupied

as a function of the measurement and pose at a point in time. This approach is

straightforward, and in principle for a given type of sensor we need only train this

model once, but only measurements within the measurement cone are considered.

The second way learning has been classically explored in occupancy grid map-

ping is in computing the full posterior p(m|x, z) for the entire map, using the complete

sequence of measurements and poses. Thrun [31] used an expectation-maximization

(EM) approach to estimate the map in the high-dimensional space of all possible

maps. The mode of the posterior, defined as the maximum of the logarithm of the

posterior:

m∗ = argmax
m

log p(m|z1:t, x1:t), (2.17)

is computed in practice by iteratively flipping cells in the map and keeping the change

whenever it increased the likelihood of the data. This method considers the map as

a whole, rather than making an independence assumption about neighboring grid

cells, but requires computation over every cell in the grid, rendering it intractable for

expansive, finely-discretized 3-dimensional grids.

Modern mapping methods that take advantage of machine learning are often

seated somewhere between the first approach—learning the inverse sensor model—and

the second approach—expectation maximization over all possible maps—but attempt

to tackle a slightly different problem: that of estimating an occupancy map over a

13

continuous space which can be queried at arbitrary resolution.

To perform this estimation tractably, we do not perform inference in the space

of all possible maps (in a continuous space, this problem has infinite dimensionality).

Rather, we consider the inverse sensor model problem, but instead we abstract away

the sensor model itself and opt instead to consider the sensor measurement as a ray

(indicating free space) which terminates when it encounters an obstacle (indicating

occupied space). By extracting the 2D or 3D coordinates of free-space measurements

(sampled from the ray) and occupied-space measurements (retrieved as the terminal

point of the ray), we can train a model that estimates occupancy in a global reference

frame over data that is continuous in nature. In these situations discretization will

be a useful approximation technique, though we avoid doing EM in potentially very

high-dimensional grids that would be required for a mobile robot navigating in a

finely-discretized 3D map. Furthermore, it will be useful as an approximation to

exercise some notion of locality, i.e. sensor measurements which are particularly far

away from a given location are likely to have little bearing on the occupancy state

of that location. The result of this is that we can adjust the region in which we

consider spatial relationships, and the cell-wise independence assumption becomes a

distance-based independence assumption.

2.3 Gaussian Process Occupancy Maps

Gaussian process occupancy maps (GPOM) [17], proposed by O’Callaghan and Ramos,

are an attempt to compute continuous occupancy maps that consider the correlations

between all of the collected data. We are primarily concerned with 3 aspects of this

method: Gaussian process regression [23], the conversion of the Gaussian process

regression output into a probability of occupancy, and the use of the Bayesian com-

14

mittee machine [33] in [11], [8], and [36] to update the Gaussian process regression

model.

2.3.1 Gaussian Process Regression

Gaussian process regression can be formulated by considering the noisy observation

model:

f(x) = xTw, y = f(x) + ε, (2.18)

for an input vector x, where w is a vector of weights, y is an observed target value,

ε is an additive noise term, and f is the function we aim to model. Furthermore, we

assume ε is normally distributed with zero mean and variance σ2
n:

ε ∼ N (0, σ2
n). (2.19)

A Gaussian process is a distribution over functions f :

f(x) ∼ GP(m(x), k(x, x′)), (2.20)

with mean function m(x) and covariance function k(x, x′)). The mean function m(x)

is typically taken to be 0, and the covariance function, or kernel function, k(x, x′) is

a measure of the similarity between two points x and x′. From training data X =

{x1, x2, . . . , xN | xi ∈ Rd}, and corresponding observations y = {y1, y2, . . . , yN | yi ∈

R}, Gaussian process regression predicts the latent function values f∗ at M query

points X∗ = {x∗1, x∗2, . . . , x∗M | x∗i ∈ Rd}:

f∗|X, y,X∗ ∼ N (f̄∗, cov(f∗)), (2.21)

15

where the mean and covariance of the latent function values can be computed as

follows:

f̄∗ = K(X,X∗)
T (K(X,X) + σ2

nI)−1y (2.22)

cov(f∗) = K(X∗, X∗)−K(X,X∗)
T (K(X,X) + σ2

nI)−1K(X,X∗). (2.23)

Here k(X,X ′) denotes the kernel function k(x, x′) evaluated pairwise over the row

vectors of two matrices X and X ′, and I is the N ×N identity matrix.

One popular choice of kernel in the context of Gaussian process regression is

the Matérn ν = 3/2 kernel:

k(x, x′) = σ2
f

(
1 +

√
3‖x− x′‖

l

)
exp

(−√3‖x− x′‖
l

)
, (2.24)

where σ2
f is a hyperparameter representing the prior signal variance and l is a hyper-

parameter controlling the length-scale of the kernel.

2.3.2 Gaussian Process Regression for Classification

Gaussian process regression presents a framework for computing a regression over

an arbitrary nonlinear function, but the predictions need not be bounded by the

observed target values. Consequently, this treatment of Gaussian process regression

alone cannot compute, for example, a probability of a particular class, as in a binary

classification problem. To amend this, we can train the Gaussian process regression

model with yi ∈ {−1, 1} indicating the negative and positive classes, and “squash”

the prediction (µ∗i, σ
2
∗i) at the i-th query point x∗i with the logistic function:

p(y∗i = 1|X, y) =
1

1 + exp(−γω∗i)
, (2.25)

16

where γ is a positive constant, ω∗i = σ2
minµ∗i/σ

2
∗i, and σ2

min is the minimum predicted

variance. The “squashing” function ensures that the predictions are between 0 and

1, and may be interpreted as the probability that the query point is of the positive

class.

2.3.3 Bayesian Committee Machine

The Bayesian committee machine (BCM) [33] provides a means of combining Gaus-

sian process regression models trained on different data. Suppose we have a data set

comprised of individual sets of observations D = {D1,D2, . . . ,DK | Di = {(Xi, yi)}},

and we make the approximation:

p(Di|Di−1, f∗) ≈ p(Di|f∗), (2.26)

that is, the data sets are independent given the latent function values at the query

points. With this approximation, we can recursively apply Bayes’ rule to obtain an

approximate predictive density:

p̂(f∗|D) ∝
∏K

i=1 p(f∗|Di)
p(f∗)K−1

. (2.27)

When the predictive densities are normally distributed, as in the case of Gaussian

process regression, we can formulate the estimated mean and covariance as follows:

m̂(f∗|D) = ĉov(f∗|D)
K∑
i=1

cov(f∗|Di)−1m(f∗|Di) (2.28)

ĉov(f∗|D)−1 = −(K − 1)σ−2f +
K∑
i=1

cov(f∗|Di)−1, (2.29)

17

Figure 2.2: Representative demonstration of Gaussian process occupancy maps from
[17]. Left: Original occupancy map; Right: Corresponding Gaussian process oc-
cupancy map. White indicates free space in the occupancy grid map, while black
indicates occupied space, and grey signifies space for which the occupancy state is
unknown. The Gaussian process occupancy map is colored from blue to red according
to the probability of occupancy (0.0 to 1.0).

where m(·) and cov(·) are the mean and covariance of the distribution over f∗, while

m̂(·) and ĉov(·) are the BCM estimates of the mean and covariance.

2.3.4 Mapping with Gaussian Process Regression

We have now built up all of the tools that we need to perform learning-aided mapping

with Gaussian process occupancy maps. The mapping problem is treated as a binary

classification problem, where classes are “occupied” or “free.”

It is straightforward to obtain data representing the “occupied” class—these

are simply the “hit” points measured by our range sensor. To obtain “free” points, we

may interpolate linearly or sample randomly along the sensor ray starting at the sensor

origin and ending at the terminal “hit” point. Alternatively, we may consider for each

query point only the nearest point on the sensor ray as the relevant “free” point, which

is equivalent to treating the continuous line segment as a single observation. Each

18

of these methods is not without issue, a subject that will be discussed in detail in

Chapter 4.

For now, however, we will suppose we have collected a set of training obser-

vations from our range sensor X = {x1, x2, . . . , xN | xi ∈ R3} comprised of the 3D

coordinates of our “occupied” and “free” points in some global reference frame, and

corresponding labels y = {y1, y2, . . . , yN | yi ∈ {−1, 1}}. For a set of arbitrary 3D

query points X∗ = {x∗1, x∗2, . . . , x∗M | x∗i ∈ R3} we can compute the probability of

occupancy by first computing the predicted mean from (2.22) and covariance from

(2.23) and then applying the squashing function in (2.25). When new observations

are obtained we can aggregate the data collected and train a new Gaussian process

regression model, or we can train a separate model and combine the estimators with

the BCM, as in [11] and [36]. A representative example of Gaussian process occu-

pancy maps from [17] is provided in Figure 2.2, where it can be observed that the

Gaussian process occupancy map provides predicted occupancy probabilities for areas

that are considered unknown in the corresponding occupancy grid map.

While this method enables continuous occupancy mapping considering spa-

tial correlations between all sensor observations, the mean and covariance prediction

equations (2.22) and (2.23) require the inversion of an N ×N covariance matrix, an

operation in O(N3), which has motivated new methods for real-time online learning-

aided mapping.

2.4 Hilbert Maps

Hilbert maps [22] combine several advances in machine learning to provide results

comparable to Gaussian process occupancy mapping in a way that scales more suit-

ably to the large amount of data from incoming sensors that must be processed during

19

mapping. These advances include approximations to nonlinear kernel functions to

speed up computation of kernel transformations and stochastic gradient descent for

both training and updating the aforementioned classifiers in linear time.

A logistic regression [1] classifier is chosen, since its outputs naturally resemble

continuous probabilities. While alternative classifiers like the Support Vector Machine

(SVM) [26] can provide scores or probabilistic outputs (for example, using Platt

scaling [20]), it has been demonstrated by Ramos and Ott [22] that such methods

often provide results claiming high degrees of confidence in regions with relatively few

training points.

The relevant components of Hilbert maps are presented in the following sec-

tions, and the adaptation of the Gaussian process occupancy mapping procedure

discussed in Section 2.3.4 to Hilbert maps is straightforward: the Gaussian process

regression model is replaced by logistic regression, the Matérn kernel is replaced by

an approximate radial basis function kernel, and stochastic gradient descent is used

to train the model, rather than a readily-available closed-form solution for the model

weights.

2.4.1 Logistic Regression

In Hilbert maps, we adopt a nonlinear formulation of a logistic regression classifier

in which the predicted probability of occupancy for a point x∗ given a set of training

points x is as follows:

p(y∗ = 1|x∗, w) =
1

1 + exp(wTk(x∗, x))
, (2.30)

where k(·) denotes the kernel function mapping input 3-dimensional coordinates to

a high-dimensional feature space. Probability of non-occupancy for a cell p(y∗ =

20

−1|x∗, w) is equivalent to 1 − p(y∗ = 1|x∗, w), since we maintain that the state of a

particular cell is binary.

The major benefit of this logistic regression formulation over Gaussian process

regression is that this method can be trained very quickly using Stochastic Gradient

Descent (SGD) and evaluation is O(n) where n is the size of the test data. As a

result, computation of the kernel transformation becomes the most costly part of

classification.

2.4.2 Kernel Approximation

In order to represent the non-linear spatial dependency of occupancy in 3-dimensional

space, we use the radial basis function (RBF) kernel. The kernel transformation is

computed as:

k(x, x′) = exp(−γ‖x− x′‖2), (2.31)

where the parameter γ is a positive constant tuned in cross-validation. The RBF

kernel maps each sample in the training data to a feature vector containing weighted

pairwise distances between that sample and every other training sample. During

prediction, the distance between each query point and every training point must be

computed to generate a corresponding test feature vector. This pairwise distance

computation becomes computationally expensive as we increase the amount of data,

which presents difficulty in applying these techniques to large datasets, especially if

we seek to perform real-time inference during map traversal.

For this reason, we opt to approximate the full RBF kernel. Specifically, we

use the Nyström method [39] to approximate the RBF kernel with the projection of

the original kernel onto a set of m inducing points x̂1...m where we may choose the

21

value of m. In this method we seek to find a function φNyström such that:

k(x, x′) ≈ φNyström(x)TφNyström(x′). (2.32)

The resulting feature transformation of x is as follows:

φNystöm(x) = D−1/2V T (k(x, x̂1), . . . , k(x, x̂m)), (2.33)

where D is a diagonal matrix containing the decreasing non-negative eigenvalues of

the kernel computed between all m inducing points and V is the set of its respec-

tive eigenvectors. The Nyström method was selected due to the promising results

demonstrated in [22]. Kernel computation remains the most expensive step in the

classification process, though this approximation offers a significant increase in speed.

2.4.3 Stochastic Gradient Descent

The general optimization problem we seek to solve in SGD is to find the weights w

and bias b which minimize the regularized training error:

E(w, b) =
1

n

n∑
i=1

L(yi, f(xi)) + α‖w‖1, (2.34)

where L(yi, f(xi)) is the loss function of our choosing, α is a regularization parame-

ter, and ‖w‖1 is the L1-norm of the weights. For linear logistic regression, the loss

function, after substitution of the hypothesis function from Equation 1 for f(xi) is as

follows:

L(yi, f(xi)) = log(exp(−yi(xTi w + b)) + 1). (2.35)

22

Figure 2.3: Representative image of Hilbert maps from [22]. Left to Right: Occupancy
grid map, Hilbert map, aerial view of environment. Maps color varies with probability
of occupancy.

To use this loss function for non-linear decision boundaries we replace x with the

feature vectors from the kernel computation k(x, x′). We choose to regularize the L1-

norm, since we are also interested in allowing feature selection to take place during

learning. Ideally, features which have no significant bearing on the occupancy of

a region will be eliminated, and the sparsity of the resulting weights will speed up

evaluation of the model during testing.

2.4.4 Mapping with Hilbert Maps

The techniques applied in Hilbert maps have been shown to provide substantial im-

provements in computation time without sacrificing accuracy as compared to GPOM

[22]. A representative demonstration of Hilbert maps from [22] is included in Figure

2.3. Furthermore, stochastic gradient descent provides us with a means of updating

our classifier online: given a new set of data, simply perform a few more iterations of

gradient descent with the recently acquired data. The kernel approximation method

is quite useful in 2D, where very few inducing points are needed to accurately ap-

proximate the full kernel. In 3D, however, the number of components necessary to

approximate this kernel grows substantially, making real-time computation in this

framework difficult [2].

23

For this reason, we have proposed an approximation to Hilbert maps which we

call overlapping Hilbert maps, where we train a separate logistic regression classifier

for each new dataset collected and fuse the results. The smaller spatial extent and

reduced complexity of the geometry in a single scan allows us to approximate the

kernel with fewer components while achieving comparable results.

24

Chapter 3

Overlapping Hilbert Maps

Overlapping Hilbert maps [2] is a novel formulation of Hilbert maps in which we con-

struct a global occupancy map by fusing local Hilbert maps. Rather than maintaining

a single supervised learning model for the entire map, a new model is trained with

each scan. We apply the binary Bayes filter (2.16) to merge local maps. This formula-

tion allows Hilbert maps to be applied incrementally in real-world mapping scenarios

with overlap between sensor observations. We evaluate the method on simulated and

real 3D range data; these results represent the first 3D application of Hilbert maps.

While Hilbert maps offers computational advantages over Gaussian process oc-

cupancy maps, the logistic regression model used in Hilbert maps does not provide

the covariance information necessary to implement fusion using a Bayesian committee

machine (BCM) [33], in contrast to Gaussian process regression, where the BCM has

aided online incremental map fusion [8], [11]. The original Hilbert maps formulation

requires that we maintain and update a single global classifier, however it is desir-

able to perform scalable, incremental updates to a map as new data is gathered in

real-time. Our proposed formulation of Hilbert maps allows for the use of multiple

estimators by enabling local map fusion between overlapping scans.

In Section 3.1 we present the map update procedure for overlapping Hilbert

maps, and in Section 3.2 we present computational results where we quantitatively

compare our method to both OctoMap [7] and global Hilbert mapping on two simu-

lated datasets and demonstrate the inference capability of the method over real data

from the University of Freiburg [34].

25

Figure 3.1: A representative 2D example of overlapping Hilbert maps in a simulated
environment. Scans 1, 7, 14, and 20 of 20 are shown, with predictions performed at
a 5 cm resolution. A magenta circle marks the robot’s current location and black
circles represent the robot’s previous locations. Red markers denote hit points, blue
markers denote free points, and green markers denote points assumed free where the
simulated laser reached its maximum range without encountering any obstacles.

26

3.1 Probabilistic Local Map Fusion

Previously there have been several general approaches to constructing a global map

from local maps. One approach is to develop a single classifier trained on accumulated

data from across the map and predict values in postprocessing of the entire map. This

is characteristic of the original methods of Gaussian process occupancy mapping.

While this allows the classifier to choose informative features from the entire map,

the resulting correlated occupancy map cannot be used during local planning or

exploration.

Kim and Kim [11] have demonstrated overlapping map fusion for local Gaus-

sian processes with the Bayesian committee machine (BCM) [33]. Such a method is

useful in the case of Gaussian processes, where the outputs of the estimator have both

predicted mean and variance information. This variance information provides insight

into the uncertainty of the estimator, which can be used to make informed decisions

when updating a grid cell with more than one prediction. The logistic regression

estimator we use, however, does not provide variance information for its predictions.

In [22] a method has been presented to incrementally update a single global

estimator given new training data. As in Gaussian process occupancy mapping, this

allows a map to be produced at arbitrary resolution which very effectively captures

the spatial correlation among all cells. We seek, however, to apply the methods from

Hilbert maps in a way that allows us to use the inference of estimators to incrementally

update maps in real-time, so they may be used for fast decision-making in the course

of exploring unknown environments, as with Gaussian processes in [8].

Rather than maintaining a single classifier which we train online as the robot

traverses the map, we opt instead to train a new logistic regression classifier at every

new scan. This allows for real-time inference during exploration. In order for this

27

Algorithm 1 updateMap(X ,Y)

1: K ← fitApproxRBF (X ,X);
2: model← train(K,Y);
3: M← all cells ∈Map within bounding box of X ;
4: X∗ ← mi ∈M if mi in robot’s perceptual field;
5: query ← K.tranformApproxRBF (X∗);
6: Ŷ ← model.predict(query);
7: for ŷi ∈ Ŷ do
8: pi ← [1 + (1− pi)/pi ∗ (1− ŷi)/ŷi]−1;
9: end for

method to be effective, we must handle overlapping estimator predictions. There are

several consequences of this formulation of the method, one of which is the loss of the

multi-resolution property of Hilbert maps. In our implementation, a resolution must

be chosen a priori in order to update the map cells, but we discuss in Section 3.3

a formulation of the method which does not require a priori discretization of space.

Using one incrementally updated classifier a complete map of arbitrary resolution

could be constructed a posteriori. However, without querying the classifiers during the

exploration process, decisions regarding path-planning and navigation must be made

using only the sparse sensor data. By applying the Reproducing Kernel Hilbert Spaces

(RKHS) method demonstrated in [22], it is also possible to maintain the robustness

of Hilbert maps to noise due to pose uncertainty, extending the applicability of the

methods to noisy data.

3.1.1 Map Update Algorithm

To solve the problem of merging overlapping local Hilbert maps to produce a global

map, we make static map assumption, or Markov assumption stated in (2.3). Under

this assumption, we consider the problem of updating the occupancy probability to

be analogous to integrating the outputs of several sensors which intersect the same

28

cell in the case of occupancy grid mapping [14] or OctoMap [7]. We generalize the

sensor fusion update rule for all overlapping estimator predictions by treating each

estimator as a sensor in itself, where the output of the sensor for each cell is the

predicted occupancy probability for the cell. That is, we take the output of the

logistic regression classifier (which we will call ŷt) to be the probability of occupancy

for cell mi given the data at time t.

(a) The ground truth map (b) The raw sensor data (c) The result of OctoMap

(d) The result of global
Hilbert maps (m = 100)

(e) The result of global
Hilbert maps (m = 1000)

(f) The result after in-
crementally applying over-
lapping Hilbert maps

Figure 3.2: The results of 3D Hilbert maps applied to a simulated environment.
Training data is provided by the raw sensor data in (b) and the model is evaluated
for all cells within the perceptual field of the robot at each scan. Note that the global
Hilbert map with m = 100 in (d) fails to effectively capture the sharp changes in
occupancy probability in the structured environment, while the equivalent classifier
is much more effective when updated at each new scan. We apply the update rule
from Algorithm 1 to fuse overlapping local Hilbert maps and form the global map
seen in (f).

With this interpretation of the classifier output, applying the update rule gives

the updated occupancy probability for grid cell mi given the current prediction ŷt from

29

the output of the logistic regression classifier as:

p(mi|ŷt) =
[
1 +

1− p(mi|ŷ1:t−1)
p(mi|ŷ1:t−1)

1− p(mi|ŷt)
p(mi|ŷt)

p(mi)

1− p(mi)

]−1
, (3.1)

which is simply a rearranged form of the binary Bayes filter update in (2.16). The

updated occupancy probability p(mi|ŷt) depends only on the current prediction, the

previous prediction p(mi|ŷ1:t−1), and the prior occupancy probability p(mi). In prac-

tice the prior occupancy probability is assumed 0.5.

Method AUC Precision Recall
OctoMap 0.92 0.320 0.097
Global Hilbert Map (m = 100) 0.91 0.792 0.108
Global Hilbert Map (m = 1000) 0.97 0.661 0.877
Overlapping Hilbert Maps 0.97 0.709 0.868

Table 3.1: Numerical comparison of the methods tested on the structured map. Pre-
cision and recall scores computed using a threshold occupancy probability of 0.7.

The sensor fusion update rule as it applies to combining estimator predictions

has the property that more informative predictions have more influence on the up-

dated occupancy probability. That is, an estimated occupancy probability close to

0.5 offers little change to the final occupancy probability, since the estimate provides

very little new information. Additionally, outputs that conflict (i.e. a low occupancy

probability followed by a high occupancy probability) cause the update to tend to-

ward 0.5, so that the lack of consensus among “sensors” is reflected in the updated

probability. Since there is some degree of redundancy in the data from consecutive

scans, the result of this update rule is that the various classifiers trained on data from

different scans may serve to improve on each others’ predictions.

The complete map update algorithm is presented in Algorithm 1, including the

kernel computation step, the training and querying of a logistic regression classifier,

30

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Overlapping Hilbert Maps
Global Hilbert Map (m = 100)
Global Hilbert Map (m = 1000)
Standard Octomap

Figure 3.3: Resulting receiver operating characteristic (ROC) curves comparing incre-
mental overlapping Hilbert maps with the same classifier trained on data across the
entire map and evaluated once for each cell in the global map and standard OctoMap.
These results were obtained in the structured environment depicted in Figure 3.2.

and the application of the update rule to overlapping estimator predictions. The

function fitApproxRBF (X ,X) computes the Nyström approximation to the RBF

kernel using the provided training data. The function transformApproxRBF (X∗)

transforms the coordinates of each cell in the set of test points X∗ to a feature vector

using the previously fit RBF kernel approximation. All pi ∈ P denote the occupancy

probabilities for the corresponding cells mi ∈M. Map is the set of all cells of a pre-

viously selected resolution in the global map, each initialized to the prior occupancy

probability 0.5. An illustrative 2D example of the incremental construction of the

31

resulting occupancy map using Algorithm 1 is shown in Figure 3.1.

3.2 Computational Results

(a) The ground truth map (b) The raw sensor data (c) The result of OctoMap

(d) The result of global
Hilbert maps (m = 100)

(e) The result of global
Hilbert maps (m = 1000)

(f) The result after in-
crementally applying over-
lapping Hilbert maps

Figure 3.4: The results of 3D Hilbert mapping applied to a simulated unstructured
environment. Training data is provided by the raw sensor data in (b). Standard
OctoMap applied to the sensor data is shown in (c). The global Hilbert mapping
model requires several minutes to compute, but generates a much more accurate,
complete map. In (f) we show the results of incremental overlapping Hilbert maps,
updated using the local map fusion algorithm presented in Algorithm 1.

The algorithm was evaluated in two simulated environments and one real en-

vironment. The first of the two simulations provided a structured environment, rep-

resentative of an indoor setting. The second simulation provides an unstructured en-

vironment, emulating navigation of a forest. We quantitatively compare the accuracy

and computation time of our method, fusing several local overlapping Hilbert maps

(each with 100 Nyström components), with a formulation of Hilbert maps, which we

call global Hilbert maps, that trains and queries a single predictor after map traversal

(evaluated with 100 and 1000 Nyström components) and with OctoMap. In simu-

32

lation, each method was directly compared against ground truth. The beams from

the simulated laser range finder were sampled at regular intervals, providing training

data for the unoccupied region, as in Figure 3.1. We then provide the visual output

of inference for real laser data from the University of Freiburg. Finally, we demon-

strate the applicability of this method to noisy sensor data using the RKHS method.

We use γ = 3.0 for the RBF kernel except where otherwise noted. The tests for

both the simulated data and real data were built using the Robot Operating System

(ROS) [21]. The Gazebo Simulator [12] was used to develop the quantitative tests in

the simulated environment. The logistic regression classifier and kernel approxima-

tion functions were provided by the scikit-learn [18] Python machine learning library.

All computation was performed on a HP EliteBook 8570w with a 2.40 GHz Intel i7

CPU. Our goals in this section are three-fold: to show that fusing local overlapping

Hilbert maps provides results comparable to the equivalent global Hilbert map, to

demonstrate that Hilbert mapping can be applied in realistic 3D mapping scenarios

and achieve near real-time performance, and to compare the performance of these

methods with standard OctoMap [7], emphasizing that both global and incremental

overlapping Hilbert maps produce denser, more accurate maps when compared to

ground truth, and provide useful predictions given relatively few scans compared to

OctoMap.

3.2.1 Structured Simulation

The structured environment represents a 10.0 m× 7.0 m× 2.0 m indoor setting, con-

taining mostly right-angle edges. Some artifacts of the RBF kernel approximation

can be found in the result of Hilbert mapping. For example, edges which in the

ground truth map contained sharp angles are rounded in the corresponding Hilbert

map. Both of the simulated environments were mapped using a laser range-finder

33

with 120◦ scan sectors. On each map twelve scans were processed, consisting of a

total of four 360◦ waypoint scans. In Figure 3.2, we present the visual results after

applying the OctoMap, global Hilbert mapping with 100 and 1000 Nyström compo-

nents, and incremental overlapping Hilbert maps, as well as the ground truth map

and raw sensor data. The sharp boundary edge is due to the use of bounding boxes

around the training data for each scan to obtain the points that will be used to query

the classifier. Figure 3.3 shows the receiver operating characteristic (ROC) curves for

the different methods on the structured map. The comparison of the area under the

ROC curve (AUC) is provided in Table 3.1, along with the precision and recall for

each method with occupancy probability threshold of 0.7 (as is common in implemen-

tations of OctoMap), which shows that OctoMap tends to misclassify occupied voxels

as unoccupied voxels, while the other methods more accurately predict the occupied

voxels.

We found that using only 100 Nyström components for global Hilbert map-

ping was not enough to effectively capture the sharp changes in occupancy probability

found on this map. However, the equivalent classifier (100 components) quite effec-

tively captured the structure of the map in comparison when evaluated for each scan

and updated using our local map fusion method. When we increased the number of

Nyström components to 1000 we found that we could produce a slightly more accu-

rate map compared to ground truth than incremental overlapping Hilbert maps, but

with significant additional computation time required, shown in Table 3.3.

3.2.2 Unstructured Simulation

Our unstructured simulation replicates the case of navigating a forest region, di-

mensioned 10.0 m × 7.0 m × 2.0 m, where obstacles are numerous and do not have

well-defined angular structure. Additionally, many sections of the environment are ob-

34

scured during traversal, leading to more sparsity in the training set. The walls around

the environment, while adding elements of structure to the simulation, demonstrate

the capability of these techniques to handle sensor data from a world with inconsis-

tent structure. The ROC curves from the methods evaluated on the unstructured

map are shown in Figure 3.5. In the case of 100 Nyström components, the area under

the ROC curve for fused overlapping Hilbert maps and a single global Hilbert map

were comparable. If the number of components used was increased, the AUC for the

global Hilbert maps method, shown in Table 3.2, increased as well. Precision and

recall scores are also provided in Table 3.2, where again we observe the low recall

score of OctoMap compared to the other methods. As in the case of the structured

simulation, significant additional computation time was needed for the global Hilbert

map in order to achieve a marginal benefit over the fused local mapping method. In-

creasing the number of Nyström components for the incremental overlapping Hilbert

maps method did not significantly influence results, and if the pre-determined number

of Nyström components was greater than the number of training samples, standard

evaluation of the full RBF kernel is preferred. It is intuitive that a larger number of

components would better approximate a larger training set, as in the case of a global

Hilbert map, but the number of training points per scan is relatively small compared

to the data from the entire map, and thus little benefit comes from increasing the

number of components for the incremental overlapping Hilbert maps method; in some

cases the number of incoming samples is few enough that full evaluation of the RBF

kernel is possible.

3.2.3 Real Data

We performed inference for qualitative evaluation on data from the University of

Freiburg corridor OctoMap dataset. The entire map measures 43.8 m×18.2 m×3.3 m.

35

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Overlapping Hilbert Maps
Global Hilbert Maps (m = 100)
Global Hilbert Maps (m = 1000)
Standard Octomap

Figure 3.5: ROC curves comparing overlapping Hilbert maps with the same classifier
trained on data across the entire map and evaluated once for each cell in the global
map and standard OctoMap in the unstructured environment.

360◦ pan-tilt laser scans were sparsified to generate training sets of approximately 6%

of the original data. Figure 3.6 shows a view from outside the corridor produced by

incremental overlapping Hilbert maps (m = 100, γ = 10.0 for the kernel approxi-

mation), compared to the sparsified raw data from the range sensor. Incremental

overlapping Hilbert maps produce a denser, more complete map than the map pro-

duced by the sparsified raw sensor data alone. In Figure 3.7, we show the maps from

a perspective within the corridor. In both cases we see that while this method is ca-

pable of reasonable inference in a real environment, 100 components is not enough to

effectively capture the sharp changes in occupancy probability in a large, structured

36

Method AUC Precision Recall
OctoMap 0.89 0.418 0.042
Global Hilbert Map (m = 100) 0.94 0.999 0.248
Global Hilbert Map (m = 1000) 0.98 0.990 0.629
Overlapping Hilbert Maps 0.95 0.797 0.832

Table 3.2: Numerical comparison of the methods tested on the unstructured map.
Precision and recall metrics computed for an occupancy threshold value of 0.7.

Figure 3.6: The real 3D range sensor data from the Freiburg corridor map (top) com-
pared to the result after performing incremental overlapping Hilbert maps (bottom)
viewed from outside the corridor. A threshold occupancy probability of 0.7 was used.
Each map is colored by height.

37

Dataset Scans Pts/Scan
Test

Method Time/Scan Time (s)
Pts/Scan

Structured 12 3500 29892

OHM 1.89 22.68
GHM-100 N/A 8.70
GHM-1000 N/A 331.64
OctoMap 0.02 0.2

Unstructured 12 3500 29892

OHM 1.83 21.96
GHM-100 N/A 8.52
GHM-1000 N/A 332.82
OctoMap 0.01 0.14

FR-079 66 4943 371170

OHM 14.6 963.6
GHM-100 N/A 1656.95
GHM-1000 N/A 11914.96
OctoMap 0.1 6.7

Table 3.3: Computation times for the three maps used in testing. FR-079 is the
Freiburg Corridor dataset. Comparison between overlapping Hilbert maps (OHM),
global Hilbert maps (GHM) with 100 and 1000 components, and OctoMap.

environment. Similarly, when a single classifier is used, the number of components

needed to accurately approximate a region also scales with the size of the region and

its structural complexity, so there is a trade-off between the quality of the approxima-

tion and computational practicality in these cases. To some degree, this incremental

mapping method helps to balance this trade-off, but the issue is nonetheless present

when dealing with individual scans and more work here is needed.

Since these scans are much larger than the 120◦ sector scans used in simulation,

updating the map takes much longer, as shown in Table 3.3. It should be noted

however, that the time required to process each scan is dominated by the time taken

to update the map after training. The mean time required only for training a new

estimator using the real laser range finder data was 0.5 seconds, with the rest of the

time for each scan being dominated by querying the predictor for large numbers of

grid cells and updating all of queried voxels.

38

Figure 3.7: View from inside the corridor; raw data compared to the occupancy map
produced using incremental overlapping Hilbert maps.

Figure 3.8: Depiction of a structured environment where the range sensor is corrupted
by noise. The first image (left) shows the raw sensor data. The second (center) shows
the map produced using the Nyström method, as before. The rightmost image shows
the same map produced using overlapping Hilbert maps with RKHS.

39

3.2.4 Noise in Sensor Data

We now consider the case of sensor noise due to positional or sensor measurement un-

certainty. In this demonstration, we perturb the data with Gaussian noise, N (0.0, 0.2)

in the x- and y-direction and N (0.0, 0.02) in the z-direction. Figure 3.8 compares the

output after traversing the map and fusing overlapping Hilbert maps with Nyström

features to the output when the RKHS method is used. Using the RKHS method

appears to provide a map closer to the maps produced without added noise, and

shows that fusion of overlapping Hilbert maps is able to retain the robustness to

noise provided by the original formulation of Hilbert maps.

3.3 Summary

We have presented a novel approximate formulation of Hilbert maps in which several

classifiers are trained on local range data and fused at query time. The proposed

method enables the representation of a 3D environment with fewer components re-

quired for kernel approximation, which consequently provides more computationally

tractable mapping of 3D environments with Hilbert maps.

While we have been primarily concerned with a discretized form of overlapping

Hilbert maps, relying on a grid of voxels to accommodate new observations, this

method need not be applied in only a discrete setting. It is straightforward to adapt

this approach to a continuous setting by simply storing the robot pose where each

classifier was trained, and at query time retrieving some approximate set of relevant

classifiers by performing a range search, which can be done efficiently with spatial

data structures like k-d trees. We can then predict with each of the retrieved classifiers

and fuse the results using the binary Bayes filter.

40

Chapter 4

Nonparametric Bayesian Inference for Occupancy Map Prediction

With overlapping Hilbert maps, we provided a means of merging several locally

trained classifiers to form a global occupancy map. This representation, requiring

repeated training of new classifiers, is rather cumbersome. It seems reasonable to

question whether a much simpler method owing strictly to kernel computation for

spatial interpolation may achieve similar results.

In this chapter, we will develop a mapping framework, referred to here as

Bayesian generalized kernel occupancy maps [3], which seeks to achieve this goal,

leveraging nonparametric Bayesian kernel inference to introduce local spatial depen-

dencies. We show that this method offers several desirable properties in comparison to

Gaussian process-based mapping techniques including speed of computation, the abil-

ity to be recursively updated without approximation, and consistency between batch

and online inference. The method also reverts to the use of a specified prior state

when insufficient relevant training data exist to predict the occupancy probability of

a query point, a property which is attractive for motion planning and exploration

applications with mobile robots.

Fusion of several GPs in mapping with Bayesian Committee Machines (BCMs)

[33] has been found to be useful for approximating GP occupancy maps [11]. Using

a divide and conquer approach, a combination of nested BCMs, the extended block

feature of “GPmap” [10], and test-data octrees has enabled real-time computation of

GP occupancy maps [36]. The BCM, however, is known to be an approximate update

to Gaussian process regression [33]. Successive application of approximate updates

may lead to unreliable prediction in long-term mapping scenarios, and can lead to

41

poor inference in unobserved areas of the map.

For this reason, we instead opt for a simpler model which is capable of exact

recursive updates. Motivated by its recent success in applications spanning safe high-

speed navigation [24] to state uncertainty estimation [19], we have chosen to apply the

nonparametric Bayesian generalized kernel inference method in [35] in the context of

mapping. Using this method, we are able to predict the occupancy probabilities and

their corresponding variances for cells of the map not directly observed by a sensor.

In contrast with previous work ([10, 36]), this method explicitly reverts to a selected

prior when there is insufficient training data to draw conclusions about the occupancy

state of a query cell.

Models in machine learning should perform well when queried with data that

is similar to training data, but may offer poor or unpredictable performance for query

points which are particularly dissimilar to training data. We desire a model which

will recognize when there is insufficient training data near the query point to make an

accurate prediction. Rather than attempt to make increasingly inaccurate predictions

as query points become far from training data, we would like the model to smoothly

transition to some prior with high variance, which may consist of a prediction repre-

senting an unknown state. This recognition is desirable in a variety of scenarios, but

it is particularly is attractive for avoiding situations where we may aggressively pre-

dict the contents of unoccupied space, then plan a high-speed path into areas which

should instead be treated cautiously as unknown.

In summary, we provide an application of nonparametric Bayesian kernel in-

ference to the mapping problem in order to relieve the independent cell assumption

in occupancy grids, and combine this inference method with recent developments in

sparse kernels and data structures for learning-aided mapping to achieve real-time

viability, while retaining comparable inference accuracy to existing methods. In Sec-

42

tion 4.1, we present related work, outlining several tradeoffs between existing map

inference methods. In Section 4.2, we present our application of a recent nonpara-

metric Bayesian local kernel inference model to the mapping problem and discuss the

properties of the model and the implications of those properties with respect to the

mapping application. Section 4.3 contains quantitative and qualitative evaluation of

our method against previous methods.

4.1 Related Work

Several variants of Gaussian process occupancy mapping have been proposed to obtain

reliable inference in unobserved regions of occupancy maps, with decreased computa-

tional cost. GPmap [10] partitions a map into “blocks” and “extended blocks”, used

in concert with sparse kernels to achieve offline inference with an overall complexity

of O(N
3

K2 + N2M
K2) where K is the number of blocks. This method was extended in [11]

for online approximate updates using the BCM. By further segmenting grid blocks

and making extensive use of BCM updates, the computational complexity of GP

regression for occupancy mapping has been further reduced to O(N3

K2E2 + N2M
K2E

) [36]

(where E represents additional training-data partitions) with computation time suit-

able for 3D real-time applications. This method, however, relies heavily on repeated

approximate updates.

Our use of the generalized kernel inference model from [35] is motivated by its

success in several other applications from safe high-speed navigation [24] to estimation

of state uncertainty [19]. These applications emphasize the ability to apply prior

information to the model as well as the model’s predictable performance in scenarios

where query data are dissimilar to training data. We are primarily interested in the

model as a conservative estimator of occupancy which reverts to the prior occupancy

43

probability for query points that lie sufficiently far from any training data.

4.2 Bayesian Generalized Kernel Occupancy Maps

In order to simplify the problem of maintaining a predictive distribution of occupancy

states over potentially vast 3D maps, we make several assumptions. The proposed

algorithm is intended for the case of static maps. In its current form, the algorithm

presented is unable to support maps in which states other than that of the robot

are allowed to vary. Furthermore, we assume that there is some distance l such

that for all blocks, the occupancy state of a block is independent of the states of

every block of distance l or further. This assumption is consistent with our choice

of the sparse kernel presented in Section 4.2.2. These assumptions allow modest

improvements to computation time over existing methods, but more importantly

allow us to perform exact inference and updates. One important consequence of

these choices is that the model is unlikely to exhibit strong predictive performance

when the data is prohibitively sparse. Instead, the proposed algorithm offers a more

conservative approach to inference-based mapping in which, in absence of sufficient

training data, we revert to some prior knowledge, rather than attempting to make

predictions based on limited information.

4.2.1 Bayesian Nonparametric Inference

As in the standard formulation of occupancy grid mapping, a map cell mi is occupied

with probability p(mi|D1:t) and free with probability p(¬mi|D1:t) = 1 − p(mi|D1:t)

where D1:t is the set of all measurements accumulated up to time t. That is, occu-

pancy is Bernoulli distributed, with parameter θ = p(mi|D1:t). We seek to estimate

the parameter θ of the cell centered at a query point x∗. To do so, we use the nonpara-

44

metric Bayesian inference model for exponential families in [35]. With θ ∼ Beta(α, β),

the predicted mean and variance of θ are as follows:

E[θ] =
α

α + β
(4.1)

Var[θ] =
αβ

(α + β)2(α + β + 1)
, (4.2)

where α and β are hyperparameters. At each time step we obtain a range scan

containing 3D points and their corresponding labels (i.e. occupancy probabilities)

constituting the training set (xi, yi) ∈ Dt. Locations that the sensor hits are assigned

occupancy probabilities of 1.0, and free-space points are interpolated along the sensor

ray and assigned occupancy probabilities of 0.0. Given this training data, we apply

exact recursive updates to the hyperparameters:

αt = αt−1 + ȳt (4.3)

βt = βt−1 + k̄t − ȳt, (4.4)

in which k̄t and ȳt are the results of the following kernel computations:

ȳt =
N∑
i=1

k(xi, x∗)yi (4.5)

k̄t =
N∑
i=1

k(xi, x∗), (4.6)

We can also solve for the log-odds representation of E[θ], desirable for its

numerical stability for probabilities near 0 and 1 [32], without directly computing

45

E[θ]:

lt = log
αt
βt
. (4.7)

The recursive updates in (4.3) and (4.4) rely only on the previous values of α and β and

kernel computations based on the current scan. The additive nature of these updates

suggests that we can generate equivalent maps offline in batch or incrementally while

traversing the map. The quantities α0 and β0 represent prior pseudo-counts of the

positive (occupied) and negative (free) classes respectively. We use α0 and β0 to apply

a small uninformative prior over the possible values of θ, so that as the results of the

kernel computation become very small, we gradually revert to the prior occupancy

probability and variance. Due to the very small uninformative prior, when there is

sufficient training data (i.e. ȳ >> α0 and k̄ >> α0 + β0), E[θ] approximates the

Nadaraya-Watson estimator m̂(x∗) [15], [38]:

m̂(x∗) =

∑N
i=1 k(xi, x∗)yi∑N
i=1 k(xi, x∗)

. (4.8)

An extension of this method could leverage prior knowledge about the environment

or sensor by making α0 and β0 functions of the query point x∗, as in [24].

We also take advantage of variance predictions in a similar fashion to previous

work [36]. We use the following model of state for cells in the environment:

state =


free, if p < pfree, σ

2 < σ2
th

occupied, if p > pocc, σ
2 < σ2

th

unknown, otherwise

(4.9)

46

in which p corresponds to the occupancy probability, which in our case is the mean

of the predictive distribution E[θ], pfree is a threshold on the occupancy probability

of cells deemed “free,” and pocc is a threshold on the occupancy probability of cells

deemed “occupied”. The variance σ2, computed as Var[θ], is thresholded by σ2
th to

filter out predictions with high variance as “unknown.”

4.2.2 Sparse Kernel

Our choice of kernel will have important implications about the exactness of the

update in (4.3) and (4.4). We opt to use the sparse kernel presented in [13],

k(x, x′) =


σ0
[2+cos(2π d

l
)

3
(1− d

l
) + 1

2π
sin(2π d

l
)
]

if d < l

0 if d ≥ l

(4.10)

where σ0 > 0 is a constant parameter of the kernel, l > 0 is the scale, and d is

the distance between x and x′. By opting for a sparse kernel, we can efficiently and

exactly compute ȳ and k̄ in O(logN) time using a k-d tree. Simply by querying a k-d

tree containing the training points for a scan with radius l about each query point x∗,

we obtain all training points with nonzero contribution to the kernel computation in

(4.10).

The overall computational complexity of the inference method is O(M logN),

where M is the number of test points and N is the number of training points. For

other kernels, such as the radial basis function (RBF) kernel or Matérn kernel, only

approximate updates can be obtained without using all of the training data. Though

we use this sparse kernel, any kernel with finite support is viable, such as a polynomial

approximation to the RBF kernel or the product of the sparse kernel and the Matérn

kernel used in [10].

47

Dataset Scans Pts/Scan
Sampled

Method Time/Scan Time (s)
Pts/Scan

Structured 12 3500 1506
BGK 0.021 0.25

GPOM 0.091 1.1
OctoMap 0.027 0.32

Unstructured 12 3500 1506
BGK 0.019 0.23

GPOM 0.075 0.90
OctoMap 0.018 0.22

FR-079 66 89445 7601
BGK 0.15 9.6

GPOM 0.28 18.4
OctoMap 0.15 10.1

Table 4.1: Computation times for the three maps used in testing. Comparison pro-
vided between Bayesian generalized kernel inference (BGK), Gaussian Process Oc-
toMap with nested BCM (GPOM) [36], and OctoMap.

4.2.3 Test Data Octrees

We adopt the test-data octrees proposed in [36] with slight adaptations to the use

of the extended block. The method proposed suggests training several separate GP

regressions for a group of query points. With the kernel inference method used, we

need not explicitly train at all. When a ray is cast, we sample free-space points

linearly along the ray at a fixed resolution, then aggregate all “free” and “hit” point

data from the extended block (i.e. all blocks within distance l from a center block)

to update the predictions at the query points in the center block. Figure 4.1 shows

a 2D illustration of the algorithm, as well as a depiction of occupancy grid mapping

for comparison. By considering all blocks within distance l of the query block as the

extended block, we are able to quickly retrieve all points with nonzero contribution

to the occupancy probability of the cells in the query block which maintains the

exactness of the inference.

Test-data octrees enable dynamic allocation as a robot explores, avoiding the

need for large, finely-discretized grids to be initialized. Test-data octrees are pruned

48

Figure 4.1: A 2D illustration of the use of test-data octrees. The top-left image depicts
standard occupancy grid mapping. In the top-right we show the setup for prediction
of the occupancy probability of all cells in block 3. The extended block consists of
all blocks within distance l, in this case the length of two grid cells, of block 3 that
contain sensor data or sampled free-space points. For each block, the data from the
corresponding extended block is aggregated and inference is performed, generating
the image at bottom-left. Finally, at bottom-right, neighboring cells within a block
with the same occupancy state are pruned. Obtained from Wang and Englot [36].

49

Figure 4.2: Demonstration of pruning test data octrees in a map inferred using
Bayesian generalized kernel inference. The octrees have depth three, and pruned
blocks are especially prevalent along the nearest wall, where high-resolution cells
have been merged into lower-resolution cells. Figure 4.4 shows maps of the same
environment without pruning. The 3D map is colored by height.

to lower resolution when all of the children of a particular node achieve the same state

[36]. In such a situation, all of the children are removed, and the parent remains. This

allows us to refine the number of query points needed for areas of space that are likely

to be highly correlated, further decreasing the time needed for computation. Pruning

also has the benefit of reducing the map’s memory consumption. We show the effects

of pruning in 3D on a map generated from simulated data in Figure 4.2.

4.3 Computational Results

We evaluated the inference method on two synthetic datasets representing “struc-

tured” and “unstructured” environments, as well as the corridor dataset from the Uni-

50

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e
 R

a
te

Structured Map

OctoMap, AUC=0.89

GPOctoMap-NBCM-P, AUC=0.95

BGKOctoMap, AUC=0.96

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Unstructured Map

OctoMap, AUC=0.85

GPOctoMap-NBCM-P, AUC=0.95

BGKOctoMap, AUC=0.91

Figure 4.3: Receiver operating characteristic curves for the 3 evaluated methods on
the Structured and Unstructured maps.

versity of Freiburg [34]. The mapping algorithm is our own C++ implementation1,

and we compare our method quantitatively to GPOctoMap with test-data octrees

[36]. We also compare our method to OctoMap [7], which provides an efficient multi-

resolution occupancy grid. We use the Robot Operating System (ROS) [21] as well as

the Point Cloud Library (PCL) [25] in our tests. The synthetic examples were made

using the Gazebo simulator [12]. We apply the parameters α0 = β0 = 0.001 enforce a

weak uninformative prior on grid cells, and the remaining parameters σ0 = 10.0 and

l = 0.3 were hand-tuned on one synthetic dataset and applied consistently through-

out. Generally the desired locality of inference will depend on the resolution of the

range sensor being used. Free space samples are taken linearly along each ray at 0.5m

resolution. All computations were performed on an HP EliteBook 8570w with a 2.40

GHz Intel i7 CPU.

In this section, we refer to the GPOctoMap implementation with nested BCM

1The code for this section is implemented in LA3DM, a C++ library for learning-aided 3D
mapping, available at https://github.com/RobustFieldAutonomyLab/la3dm.

https://github.com/RobustFieldAutonomyLab/la3dm

51

(a) The Gazebo
model

(b) Raw sensor
data

(c) OctoMap (d) GPOctoMap (e) Our method,
BGKOctoMap

Figure 4.4: Structured environment simulation. We show (a) the Gazebo simulation
model for the environment, (b) the simulated raw sensor data, (c) the map produced
by OctoMap, (d) the map produced by a prior method, GPOctoMap, and (e) the
result of applying our proposed method, BGKOctoMap.

updates as GPOctoMap-NBCM and GPOctoMap-NBCM-P when we apply pruning

[36], while we refer to our method as Bayesian generalized kernel OctoMap or BGKOc-

toMap. We show that our approach offers comparable performance to GPOctoMap-

NBCM-P when there is sufficient data. A comparison of computation time is given

in Table 4.1 where GPOctoMap-NBCM-P is abbreviated as GPOM. Generally the

proposed method achieves map inference in time comparable to OctoMap, which

suggests applicability to real-time tasks. In maps with sparser coverage, such as the

“unstructured” map, our more conservative method exhibits decreased predictive per-

formance, since more of the query points are far from training data. We additionally

provide an experimental demonstration of a robot performing station-keeping in the

simulated “structured” environment while scanning one region repetitively. We show

that our method is reliable over many scans of the same area, whereas GPOctoMap

predictions gradually become overly aggressive, over-predicting occupancy.

4.3.1 Simulated Data

The simulated environments each span 10.0× 7.0× 2.0 meters. The structured simu-

lation used is significantly more open than the unstructured simulation, allowing for

more complete sensor coverage. Qualitatively, we observe in Figure 4.4 that BGKOc-

52

(a) The Gazebo
model

(b) Raw sensor
data

(c) OctoMap (d) GPOctoMap (e) Our method,
BGKOctoMap

Figure 4.5: Unstructured environment simulation, showing (a) the simulated envi-
ronment in Gazebo, (b) the simulated raw sensor data, (c) the result after applying
OctoMap, (d) the map produced by GPOctoMap, and (e) our Bayesian generalized
kernel mapping method, BGKOctoMap.

toMap fills in several walls where OctoMap does not, drawing useful conclusions

about regions such as the far corner. In Figure 4.5 we again show that BGKOctoMap

closes many of the gaps in the OctoMap. The receiver operating characteristic (ROC)

curves for the structured map in Figure 4.3 show comparable performance between

BGKOctoMap and GPOctoMap when even though data is sparse, overall coverage

of the map is good. On the other hand, the ROC curve for the “unstructured” map

shows that the limited sensor coverage affects the performance of our method, while

GPOctoMap-NBCM-P performs well in both cases. The ROC curve plots the true

positive rate versus the false positive rate. Here we use the predicted occupancy prob-

abilities and compare to ground truth occupancy probabilities of 1.0 for an occupied

cell or 0.0, so that the comparison of inference accuracy is independent of our choice

of thresholds for the state model in (4.9). Along the curve, the probability threshold

we use to choose the positive or negative class varies from 1.0 to 0.0. This can be seen

as a plot of predictive performance as we change the occupancy probability thresh-

old. The area under the curve (AUC) is also provided in each case for comparison of

inference accuracy.

In the case of the “unstructured” map, BGKOctoMap often reverts to a prior

occupancy probability of 0.5 with high variance in regions where data is particularly

53

(a) Raw sensor data (b) OctoMap (c) Our method, BGKOc-
toMap

Figure 4.6: BGKOctoMap applied to the Freiburg FR-079 corridor dataset [34].

sparse. In some ways this is a desirable attribute of the model, since it captures the

uncertainty inherent in prediction with limited data. On the other hand, GPOctoMap

is capable of producing accurate predictions even when training data is far away from

query points. In both cases, GPOctoMap and OctoMap achieve better coverage of

the floor than BGKOctoMap. This is an artifact of the 2.5D nature of the simulated

environment coupled with our näıve representation of free space used for inference.

Interpolation of too many free-space samples along the sensor ray artificially increases

support for the free-space class in the more open regions of the environment, caus-

ing many areas of the floor to be misclassified as free or unknown, not passing the

occupancy and variance thresholds in (4.9).

4.3.2 Real Data

The Freiburg corridor pointcloud dataset [34] has dimensions 43.8×18.2×3.3 meters.

It represents a substantially more expansive environment than the simulated data,

and accordingly, the data requires more computation time. Since the pointcloud is

dense and we are primarily concerned with the application of our algorithms to sparse

data, we downsample the 89445 points per scan on average to a resolution of 0.1m,

amounting to 7601 points per scan, which provides an artificially sparsified dataset. In

54

Figure 4.7: In this simulated station-keeping demonstration, we show the results
of updating both BGKOctoMap (Top) and GPOctoMap-NBCM (Bottom) after the
introduction of 1, 15, 30, and 60 scans containing the same data (Left to Right).

this case, with substantially more data spanning a large environment, BGKOctoMap

continues to perform comparably to OctoMap in computation time required. The

map produced by BGKOctoMap from the Freiburg corridor pointclouds is shown in

Figure 4.6.

4.3.3 Comparison of Long-Term Behavior

Here we demonstrate the stable long-term performance of the proposed mapping al-

gorithm, one of its most desirable and useful features. We provide a station keeping

scenario in which a robot repeatedly scans a single location. Using the structured

environment simulation, we repeatedly input the same pointcloud to both BGKOc-

toMap and GPOctoMap-NBCM. The effects of this demonstration are provided in

Figure 4.7, where we show the output of each method after 1, 15, 30, and 60 scans.

We observe that while our method does experience some slight change due to the

contribution from the new data (particularly in areas where α0 + β0 ≈ k̄ after one

scan), the change is mild in comparison to that of GPOctoMap. Repeated applica-

55

tion of the BCM update approximations cause GPOctoMap to gradually predict that

the walls and floor of the map are thicker, even though we update it with the same

pointcloud.

The BCM update for Gaussian process regression does not perform well in this

scenario because of the approximation:

p(Di|Di−1, fq) ≈ p(Di|fq), (4.11)

where Di is comprised of a single set of training points and corresponding outputs.

In our case this is a single range scan with “occupied” hit points and “free” points

interpolated along the sensor ray. The vector fq consists of the unknown response

variables corresponding to a set of query inputs. The assumption made in the BCM

update is that the two datasets used to train separate Gaussian process regression

models are conditionally independent given the response variables to the query input.

We blatantly violate this assumption in this experiment; by using repeat observations,

we create a situation that generates highly correlated observations. To see how this

happens in practice, we can evaluate the BCM update to the mean in (2.28) and

covariance in (2.29) in this scenario. Letting D = {D1,D2, . . . ,DK | ∀i>1Di = D1},

we can obtain the following expression for the inverse covariance:

ĉov(f∗|D)−1 = −(K − 1)σ−2f +
K∑
i=1

cov(f∗|Di)−1 (4.12)

= −(K − 1)σ−2f +
K∑
i=1

cov(f∗|D1)
−1 (4.13)

= −(K − 1)σ−2f +Kcov(f∗|D1)
−1. (4.14)

Here we observe that the inverse covariance of K estimators trained on the same data

56

is K times the covariance of one of the estimators. That is, each time we repeat

this estimation procedure, the predicted covariance goes down. In principle, there

is nothing wrong with this, and we would observe a similar result for the Bayesian

nonparametric kernel inference method we have presented. When we examine the

predicted mean, we obtain the following:

m̂(f∗|D) = ĉov(f∗|D)
K∑
i=1

cov(f∗|Di)m(f∗|Di) (4.15)

= ĉov(f∗|D)
K∑
i=1

cov(f∗|D1)m(f∗|D1) (4.16)

= K ĉov(f∗|D)cov(f∗|D1)m(f∗|D1). (4.17)

Finally, we examine the result of “squashing” in (2.25) by dividing the expression for

the mean in (4.17) by the expression for the covariance in (4.14):

µ∗
σ2
∗

=
Kσ2

∗σ
2
1µ1

σ2
∗

(4.18)

= Kσ2
1µ1, (4.19)

where, for consistency with (2.25) we have written the mean as µ∗. We also approx-

imate the covariance ĉov(f∗|D) as a variance, denoted σ2
∗, and denote the mean and

variance of the estimator trained on D1 as µ1 and σ2
1, respectively. The output of the

57

“squashing” function then becomes:

p(y∗ = 1|X, y) =
1

1 + exp(−γω∗)
, γ > 0 (4.20)

=
1

1 + exp(−γ σ
2
minµ∗
σ2
∗

)
(4.21)

=
1

1 + exp(−Kγσ2
minσ

2
1µ1)

. (4.22)

In the limit of an infinite number of scans, this becomes:

lim
K→∞

p(y∗ = 1|X, y) =


1, if µ1 > 0

0.5, if µ1 = 0

0, if µ1 < 0

(4.23)

so we observe that the predicted probability will be driven toward 1 or 0 if the

predicted mean is nonzero, else it will remain at 0.5. It is this process that causes the

artifacts observed in Figure 4.7. The nonparametric Bayesian inference method differs

in that our estimation operates directly on probabilities. By performing this update

to the variance in (4.2), we can easily find that the variance decreases with each

identical dataset. However, the equivalent update to the mean (4.1) for K datasets

with our proposed formulation is as follows:

E[θ] =
α

α + β
(4.24)

=
α0 +

∑K
j=1

∑N
i=1 k(xi, x∗)yi

α0 + β0 +
∑K

j=1

∑N
i=1 k(xi, x∗)

(4.25)

=
α0 +K

∑N
i=1 k(xi, x∗)yi

α0 + β0 +K
∑N

i=1 k(xi, x∗)
, (4.26)

58

which, when there is sufficient training data, can be approximated by the Nadaraya-

Watson estimator in (4.8), denoting the estimate of the mean after K updates as

m̂(x∗)K and after one scan as m̂(x∗)1, as:

m̂(x∗)K =
K
∑N

i=1 k(xi, x∗)yi

K
∑N

i=1 k(xi, x∗)
(4.27)

=

∑N
i=1 k(xi, x∗)yi∑N
i=1 k(xi, x∗)

(4.28)

= m̂(x∗)1, (4.29)

so the estimate of the mean remains unchanged whenever this approximation holds.

We observe that by estimating the expected value of the parameter θ, we

explicitly enable confident predictions that are neither 0 or 1. If a substantial amount

of data is collected, all in roughly the same proximity to a query point x∗, our estimate

will be 0.5 with very low variance. That is, we know for sure that we have no idea

what is in x∗, and it will take even more data to convince us otherwise. We posit that

the consequences of the differences between these two methods are relevant, since it is

often a priority in simultaneous localization and mapping scenarios to seek out such

correlated observations for loop closures. With the BCM update, those observations

may produce errors in the map.

4.4 Preliminary Experiments using Point-to-Line Distance

We remarked in the previous section that the free-space representation we use poorly

represents the unoccupied space. In this work we sample linearly along sensor rays

at a fixed resolution. Clearly, this can have significant effects on the nonparametric

inference model we use, since we can skew the model toward low occupancy proba-

bilities by sampling free-space points very densely along a range beam. Other works

59

Figure 4.8: Preliminary results using point-to-line distance for free-space represen-
tation. Left to Right: OctoMap, GPOctoMap, BGKOctoMap, BGKOctoMap using
point-to-line distance. Top: Structured environment; Bottom: Unstructured environ-
ment.

have spanned a wide spectrum of parameterization choices, from representing a sensor

ray with the single free point on the beam closest to the test point of interest [17]

to employing free-space output values weighed by the entire continuous length of a

range beam [16].

We posit that the free-space representation proposed by O’Callaghan and

Ramos [17] is more appropriate for this method than a sampling-based approach.

The primary adaptation to BGKOctoMap is the adoption of the “point-to-line” dis-

tance function. Here, we treat each sensor ray as a single observation and compute

the shortest distance between a query point and the sensor ray. Equivalently this can

be thought of as retrieving the nearest single free point on the sensor ray to the query

point in question, as in [17]:

xfree =


P, if d < 0

P + d PQ
|PQ| , if 0 ≤ d ≤ 1

Q, if d > 1

(4.30)

60

d =
PQ · Px∗
|PQ|

. (4.31)

That is, for a sensor ray PQ, we compute the projection of the vector from the sensor

origin P to the query point x∗ onto PQ as d. If d is negative, the nearest point on

the ray to the query point is P , if it is between 0 and 1, the nearest point to x∗ is a

distance d along PQ, and if d is greater than 1, the nearest point to x∗ is Q. This

is simply the shortest distance between the continuous line segment representing the

sensor ray and the query point x∗.

Preliminary qualitative experimental validation of this method is provided in

Figure 4.8. We observe that this method obtains a more accurate map of occupied

space than BGKOctoMap, and better approximates the results of GPOctoMap. Fur-

thermore, we avoid biasing the estimator toward free-space by oversampling.

4.5 Summary

We have proposed a novel inference-based occupancy mapping algorithm, BGKOc-

toMap, that leverages Bayesian kernel inference, sparse kernels, and test-data octrees.

We have demonstrated that the method provides accurate predictions in areas where

there is sufficient training data, and smoothly transitions to a prior occupancy prob-

ability with high variance when there is not. The method also shows promise for

applications where multiple scans of the same areas are captured, since it integrates

new data more reliably than existing inference-based mapping methods, and updates

can be performed exactly. For the same reason, this method is also useful in situations

where we may want to update a single map exactly over multiple sessions.

61

Chapter 5

Discussion and Conclusion

In the following sections we will discuss compelling areas for future work and sum-

marize our contributions thus far.

5.1 Avenues for Future Work

The two primary assumptions we have made in this work provide very interesting

areas for future work: the static map assumption, and the relaxed independence

assumption. Adaptation of these methods to dynamic maps would greatly enhance

the applicability of these methods. Senanayake et al. [27] have investigated the use of

Hilbert maps in spatio-temporally varying environments. The relaxed independence

assumption we have made (i.e. that spatial correlation is 0 after a specified distance)

may be reasonable in many circumstances; it satisfies intuition that data that is

particularly far away from an area in question is unlikely to be highly correlated with

the area we want to know about. The main issue we take with this assumption is

that we have defined a priori a fixed distance for which we make the independence

assumption. In practical scenarios, it may not be known beforehand what a reasonable

value for this distance is. There are a few ways to mitigate this. For example, we may

simply choose a large value for this distance, ensuring that we consider a spatial region

that encompasses all potentially correlated areas. We may also avoid this assumption

altogether, in which case the exact recursive updates used in BGKOctoMap still apply,

but we must query every cell of the map whenever we acquire new data. Finally, we

may choose one or more methods to automatically learn an appropriate value for this

distance; we might perform cross-validation, or use a method like automatic relevance

62

determination (as was used by Guizilini and Ramos [6]) to allow this value to vary

for different regions of the map.

Hilbert maps are a recent innovation in robotic mapping, and there are many

possible directions for future research with this technique. We hope this research

moves toward real-time inference over occupancy maps. One concern with Hilbert

maps as opposed to Gaussian process occupancy mapping is that Hilbert maps require

parameter tuning, specifically of γ for the RBF kernel approximation and the regu-

larization parameter α from the SGD formulation, to achieve robust performance. In

principle, parameters can be tuned beforehand on similar maps. If a reserved set of

sensor data from a scan is used as a cross-validation set, it is possible to perform grid

search to estimate reasonable parameters automatically. Grid search is parallelizable,

allowing many parameter configurations to be evaluated simultaneously. A major

performance consideration for these methods is storing and querying large numbers

of grid cells at fine resolution. It may be effective to apply multi-resolution tech-

niques like OctoMap to significantly reduce the memory needed in the map update

step. Updating map cells can also be done in parallel and with GPU programming,

which can potentially offer a significant speed up over sequentially updating cells.

While we apply the proposed local map fusion method specifically to Hilbert

maps, in principle it can also be applied to the output of Gaussian process regression

for fusion without the use of a BCM. Whether this technique would improve upon the

results of Gaussian process occupancy mapping has yet to be determined. Another

potentially promising area for future work in this local map fusion technique would be

to limit the query area by filtering outliers from the training data. Further, a rigorous

evaluation of kernel approximation techniques, particularly the sparse kernel approx-

imation provided in [22] in 3D mapping using Hilbert maps would be interesting.

Finally, it may be worthwhile to investigate the possibility of aggregating data prior

63

to training and classification, i.e. submap fusion. For example, we train and test on

120◦ sector scans in our simulations, but it may be possible to increase the accuracy

of estimators by aggregating data from several scans, then performing inference and

fusion using the information from the larger submap. The resulting map could still be

built quickly in steps, but the map construction would be less incremental, whereas

one of our primary goals in this evaluation was to perform inference that assimilates

each new individual scan.

With regard to BGKOctoMap, we have implicitly assumed certainty of pose

knowledge in these experiments. This assumption can be relaxed somewhat by in-

corporating the use of the “expected kernel” used by Jadidi et al. [9] and formulated

independently using reproducing kernel Hilbert spaces by Ramos and Ott [22]. Exten-

sion of this method with the “expected kernel” would enable the use of this inference

technique in mapping scenarios where there is known pose uncertainty, as we exam-

ined in our evaluation of overlapping Hilbert maps.

We do not make full use of all of the capabilities of the nonparametric Bayesian

inference model used. It is possible with this method to incorporate more informed

prior knowledge in a principled way by making α and β functions of the query point,

as in [24]. Here we simply use a small uninformative prior to maintain an “unknown”

state (p = 0.5) in areas with very little training data. The use of the sparse Matérn

kernel in [10] may also benefit this method, since exact inference could still be per-

formed, but the ability of the Matérn kernel to capture sharp changes in occupancy

probability could improve predictive performance.

While we provide preliminary results on the use of point-to-line distance for

BGKOctoMap, a more rigorous evaluation of this method including a quantitative

comparison with previous research are warranted for further investigation.

64

5.2 Conclusion

Learning-aided occupancy mapping is a promising research area with substantial room

for improvement. Thus far, the proposed methods have not been deployed on real

robotic systems for online applications. Our proposed formulation of Hilbert maps has

substantially decreased the computational burden of the method, and may make this

method viable for real-time updates to occupancy maps constructed from logistic

regression classifiers. We have demonstrated real-time performance with Bayesian

generalized kernel inference, and we seek to develop this method further; exploring

its use with real data acquired from underwater vehicles like the VideoRay, and

examining ways to better plan paths or perform exploration in maps constructed using

this method. Learning-aided occupancy mapping has provided a tractable way to

reason about spatial correlations between measurements, and we hope that ultimately

this work will provide practical benefit in the areas of robot navigation and exploration

where sensor data is sparse or noisy, like the applications of underwater robotics that

motivated our research in this area.

65

Bibliography

[1] C.M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[2] K. Doherty, J. Wang, and B. Englot, “Probabilistic map fusion for fast, incre-

mental occupancy mapping with 3D Hilbert maps,” Proceedings of the IEEE

International Conference on Robotics and Automation, pp. 1011-1018, 2016.

[3] K. Doherty, J. Wang, and B. Englot, “Bayesian Generalized Kernel Inference for

Occupancy Map Prediction,” Proceedings of the IEEE International Conference

on Robotics and Automation, Accepted, To Appear, May 2017.

[4] A. Elfes, “Sonar-based real-world mapping and navigation.” IEEE Journal on

Robotics and Automation, vol. 3(3), pp. 249-265, 1987.

[5] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,”

Computer, vol. 22(6), pp. 46-57, 1989.

[6] V. Guizilini and F. Ramos, “Large-scale 3D scene reconstruction with Hilbert

Maps.” Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 3247-3254, 2016.

[7] A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Oc-

toMap: An efficient probabilistic 3D mapping framework based on octrees,”

Autonomous Robots, vol. 34(3), pp. 189-206, 2013.

[8] M. G. Jadidi, J. V. Miro, R. Valencia, and J. Andrade-Cetto, “Exploration on

continuous Gaussian process frontier maps,” Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, pp. 6077-6082, 2014.

66

[9] M. G. Jadidi, J. V. Miro and G. Dissanayake, “Warped Gaussian Processes

Occupancy Mapping With Uncertain Inputs,” IEEE Robotics and Automation

Letters, vol. 2, no. 2, pp. 680-687, April 2017.

[10] S. Kim and J. Kim, “GPmap: A unified framework for robotic mapping based

on sparse Gaussian processes,” Proceedings of the 9th International Conference

on Field and Service Robotics, 2013.

[11] S. Kim and J. Kim,“Recursive Bayesian Updates for Occupancy Mapping and

Surface Reconstruction,” Proceedings of the Australasian Conference on Robotics

and Automation, 2014.

[12] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator,” Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, vol. 3, pp. 2149-2154, 2004.

[13] A. Melkumyan and F. Ramos, “A Sparse Covariance Function for Exact Gaus-

sian Process Inference in Large Datasets,” Proceedings of the International Joint

Conferences on Artificial Intelligence Organization, vol. 9, pp. 1936-1942, 2009.

[14] H.P. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” Pro-

ceedings of the IEEE International Conference on Robotics and Automation, vol.

2, pp. 116-121, 1985.

[15] E.A. Nadaraya, “On estimating regression,” Theory of Probability & Its Appli-

cations, vol. 9(1), pp. 141-142, 1964.

[16] S. O’Callaghan and F. Ramos, “Continuous occupancy mapping with integral

kernels,” Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1494-

1500, 2011.

67

[17] S. O’Callaghan and F. Ramos, “Gaussian process occupancy maps,” The Inter-

national Journal of Robotics Research, vol. 31(1), pp. 42-62, 2012.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in Python.” The Journal of Machine Learning Research, vol. 12, pp.

2825-2830, 2011.

[19] V. Peretroukhin, W. Vega-Brown, N. Roy, and J. Kelly, “PROBE-GK: Predictive

robust estimation using generalized kernels,” Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, pp. 817-824, 2016.

[20] J. Platt, “Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods.” Advances in large margin classifiers, 10(3) pp.

61-74, 1999.

[21] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R.

Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” ICRA

workshop on open source software, 2009.

[22] F. Ramos and L. Ott, “Hilbert maps: scalable continuous occupancy mapping

with stochastic gradient descent,” Proceedings of Robotics: Science and Systems,

2015.

[23] C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning,

Cambridge, MA: The MIT Press, 2006.

68

[24] C. Richter, W. Vega-Brown, and N. Roy, “Bayesian Learning for Safe High-Speed

Navigation in Unknown Environments,” Proceedings of the 17th International

Symposium on Robotics Research, 2015.

[25] R.B. Rusu and S. Cousins, “3D is here: Point cloud library (pcl),” Proceedings of

the IEEE International Conference on Robotics and Automation, pp. 1-4, 2011.

[26] B. Scholkopf and A.J. Smola, Learning with kernels: support vector machines,

regularization, optimization, and beyond, MIT Press, 2001.

[27] R. Senanayake, L. Ott, S. O’Callaghan, F.T. Ramos, “Spatio-Temporal Hilbert

Maps for Continuous Occupancy Representation in Dynamic Environments,”

Advances in Neural Information Processing Systems, 2016.

[28] S. Shen, N. Michael, and V. Kumar, “Autonomous indoor 3D exploration with

a micro-aerial vehicle,” Proceedings of the IEEE International Conference on

Robotics and Automation, pp. 9-15, 2012.

[29] S. Srivastava and N. Michael, “Approximate continuous belief distributions for

precise autonomous inspection,” Proceedings of the IEEE International Sympo-

sium on Safety, Security, and Rescue Robotics, pp. 74-80, 2016.

[30] S. Thrun, “Learning metric-topological maps for indoor mobile robot naviga-

tion,” Artificial Intelligence 99.1 (1998): 21-71.

[31] S. Thrun, “Learning occupancy grid maps with forward sensor models,” Au-

tonomous robots 15.2 (2003): 111-127.

[32] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, Cambridge, MA: The

MIT Press, 2005.

69

[33] V. Tresp, “A Bayesian Committee Machine, Neural Computation, vol. 12(11),

pp. 2719-2741, 2000.

[34] University of Freiburg OctoMap 3D Scan Dataset http://ais.informatik.uni-

freiburg.de/projects/datasets/octomap/

[35] W.R. Vega-Brown, M. Doniec, and N.G. Roy, “Nonparametric Bayesian inference

on multivariate exponential families,” Advances in Neural Information Process-

ing Systems, pp. 2546-2554, 2014.

[36] J. Wang and B. Englot, “Fast, accurate Gaussian process occupancy maps via

test-data octrees and nested Bayesian fusion,” Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, pp. 1003-1010, 2016.

[37] J. Wang, S. Bai, and B. Englot “Underwater Localization and 3D Mapping

of Submerged Structures with a Single-Beam Scanning Sonar,” Proceedings of

the IEEE International Conference on Robotics and Automation, Accepted, To

Appear, May 2017.

[38] G.S. Watson, “Smooth regression analysis,” Sankhya: The Indian Journal of

Statistics, Series A, vol. 26(4), pp. 359-372, 1964.

[39] C. K. I. Williams and M. Seeger, “Using the Nyström method to speed up kernel

machines,” Proceedings of Neural Information Processing Systems, 2000.

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	The Problem Statement
	Related Research
	Summary of Contributions
	Notation

	Background
	Mapping with Known Poses
	Learning Occupancy Maps
	Gaussian Process Occupancy Maps
	Gaussian Process Regression
	Gaussian Process Regression for Classification
	Bayesian Committee Machine
	Mapping with Gaussian Process Regression

	Hilbert Maps
	Logistic Regression
	Kernel Approximation
	Stochastic Gradient Descent
	Mapping with Hilbert Maps

	Overlapping Hilbert Maps
	Probabilistic Local Map Fusion
	Map Update Algorithm

	Computational Results
	Structured Simulation
	Unstructured Simulation
	Real Data
	Noise in Sensor Data

	Summary

	Nonparametric Bayesian Inference for Occupancy Map Prediction
	Related Work
	Bayesian Generalized Kernel Occupancy Maps
	Bayesian Nonparametric Inference
	Sparse Kernel
	Test Data Octrees

	Computational Results
	Simulated Data
	Real Data
	Comparison of Long-Term Behavior

	Preliminary Experiments using Point-to-Line Distance
	Summary

	Discussion and Conclusion
	Avenues for Future Work
	Conclusion

	Bibliography

